On Crossing Numbers of Complete Tripartite and Balanced Complete Multipartite Graphs
نویسندگان
چکیده
The crossing number cr(G) of a graph G is the minimum number of crossings in a nondegenerate planar drawing of G. The rectilinear crossing number cr(G) of G is the minimum number of crossings in a rectilinear nondegenerate planar drawing (with edges as straight line segments) of G. Zarankiewicz proved in 1952 that cr(Kn1,n2) ≤ Z(n1, n2) := ⌊ n1 2 ⌋ ⌊ n1−1 2 ⌋ ⌊ n2 2 ⌋ ⌊ n2−1 2 ⌋ . We define an analogous bound for the complete tripartite graph Kn1,n2,n3 ,
منابع مشابه
Crossing numbers of complete tripartite and balanced complete multipartite graphs
The crossing number cr(G) of a graph G is the minimum number of crossings in a nondegenerate planar drawing of G. The rectilinear crossing number cr(G) of G is the minimum number of crossings in a rectilinear nondegenerate planar drawing (with edges as straight line segments) of G. Zarankiewicz proved in 1952 that cr(Kn1,n2) ≤ Z(n1, n2) := ⌊ n1 2 ⌋ ⌊ n1−1 2 ⌋ ⌊ n2 2 ⌋ ⌊ n2−1 2 ⌋ . We define an ...
متن کاملOn size multipartite Ramsey numbers for stars versus paths and cycles
Let Kl×t be a complete, balanced, multipartite graph consisting of l partite sets and t vertices in each partite set. For given two graphs G1 and G2, and integer j ≥ 2, the size multipartite Ramsey number mj(G1, G2) is the smallest integer t such that every factorization of the graph Kj×t := F1 ⊕ F2 satisfies the following condition: either F1 contains G1 or F2 contains G2. In 2007, Syafrizal e...
متن کاملRamsey numbers in complete balanced multipartite graphs. Part I: Set numbers
The notion of a graph theoretic Ramsey number is generalised by assuming that both the original graph whose edges are arbitrarily bi–coloured and the sought after monochromatic subgraphs are complete, balanced, multipartite graphs, instead of complete graphs as in the classical definition. We previously confined our attention to diagonal multipartite Ramsey numbers. In this paper the definition...
متن کاملRamsey numbers in complete balanced multipartite graphs. Part II: Size numbers
The notion of a graph theoretic Ramsey number is generalised by assuming that both the original graph whose edges are arbitrarily bi–coloured and the sought after monochromatic subgraphs are complete, balanced, multipartite graphs, instead of complete graphs as in the classical definition. We previously confined our attention to diagonal multipartite Ramsey numbers. In this paper the definition...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 84 شماره
صفحات -
تاریخ انتشار 2017